High Accuracy Computation of Rank-Constrained Fundamental Matrix

نویسندگان

  • Yasuyuki Sugaya
  • Kenichi Kanatani
چکیده

A new method is presented for computing the fundamental matrix from point correspondences: its singular value decomposition (SVD) is optimized by the Levenberg-Marquard (LM) method. The search is initialized by optimal correction of unconstrained ML. There is no need for tentative 3-D reconstruction. The accuracy achieves the theoretical bound (the KCR lower bound).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Accuracy Computation of Rank-constrained Fundamental Matrix by Efficient Search

High Accuracy Computation of Rank-constrained Fundamental Matrix by Efficient Search Yasuyuki SUGAYA† and Kenichi KANATANI†† † Department of Information and Computer Sciences, Toyohashi University of Technology, Toyohashi, Aichi, 441–8580 Japan †† Department of Computer Science, Okayama University, Okayama, 700–8530 Japan E-mail: †[email protected], ††[email protected] Abs...

متن کامل

Estimating the Fundamental Matrix via Constrained Least-Squares: A Convex Approach

ÐIn this paper, a new method for the estimation of the fundamental matrix from point correspondences is presented. The minimization of the algebraic error is performed while taking explicitly into account the rank-two constraint on the fundamental matrix. It is shown how this nonconvex optimization problem can be solved avoiding local minima by using recently developed convexification technique...

متن کامل

On the Estimation of the Fundamental Matrix: A Convex Approach to Constrained Least-Squares

In this paper we consider the problem of estimating the fundamental matrix from point correspondences. It is well known that the most accurate estimates of this matrix are obtained by criteria minimizing geometric errors when the data are aaected by noise. It is also well known that these criteria amount to solving non-convex optimization problems and, hence, their solution is aaected by the op...

متن کامل

Certifiably Optimal Low Rank Factor Analysis

Factor Analysis (FA) is a technique of fundamental importance that is widely used in classical and modern multivariate statistics, psychometrics, and econometrics. In this paper, we revisit the classical rank-constrained FA problem which seeks to approximate an observed covariance matrix (Σ) by the sum of a Positive Semidefinite (PSD) low-rank component (Θ) and a diagonal matrix (Φ) (with nonne...

متن کامل

TR-2011009: Solving Linear Systems of Equations with Randomized Augmentation and Aggregation

Seeking a basis for the null space of a rectangular and possibly rank deficient and ill conditioned matrix A we combine scaled randomized augmentation with aggregation to reduce our task to computations with well conditioned matrices of full rank. Our algorithms avoid pivoting and orthogonalization and preserve matrix structure and sparseness. In the case of ill conditioned inputs we perform a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007